Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370833

RESUMEN

Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.

2.
Nature ; 616(7955): 113-122, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922587

RESUMEN

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Asunto(s)
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animales , Humanos , Ratones , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análisis de la Célula Individual , Especificidad de Órganos , Encéfalo/embriología , Encéfalo/metabolismo , Envejecimiento/genética
3.
Nat Biotechnol ; 41(10): 1405-1409, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36823353

RESUMEN

In this study, we extended co-indexing of transcriptomes and epitopes (CITE) to the spatial dimension and demonstrated high-plex protein and whole transcriptome co-mapping. We profiled 189 proteins and whole transcriptome in multiple mouse tissue types with spatial CITE sequencing and then further applied the method to measure 273 proteins and transcriptome in human tissues, revealing spatially distinct germinal center reactions in tonsil and early immune activation in skin at the Coronavirus Disease 2019 mRNA vaccine injection site.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Humanos , Transcriptoma/genética , Epítopos , ARN Mensajero , Perfilación de la Expresión Génica/métodos
4.
Nature ; 609(7926): 375-383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978191

RESUMEN

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Epigenómica , Perfilación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Tonsila Palatina/citología , Tonsila Palatina/inmunología
5.
Front Immunol ; 13: 914236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669791

RESUMEN

Human glioblastoma (GBM), the most aggressive brain tumor, comprises six major subtypes of malignant cells, giving rise to both inter-patient and intra-tumor heterogeneity. The interaction between different tumor subtypes and non-malignant cells to collectively shape a tumor microenvironment has not been systematically characterized. Herein, we sampled the cellular milieu of surgically resected primary tumors from 7 GBM patients using single-cell transcriptome sequencing. A lineage relationship analysis revealed that a neural-progenitor-2-like (NPC2-like) state with high metabolic activity was associated with the tumor cells of origin. Mesenchymal-1-like (MES1-like) and mesenchymal-2-like (MES2-like) tumor cells correlated strongly with immune infiltration and chronic hypoxia niche responses. We identified four subsets of tumor-associated macrophages/microglia (TAMs), among which TAM-1 co-opted both acute and chronic hypoxia-response signatures, implicated in tumor angiogenesis, invasion, and poor prognosis. MES-like GBM cells expressed the highest number of M2-promoting ligands compared to other cellular states while all six states were associated with TAM M2-type polarization and immunosuppression via a set of 10 ligand-receptor signaling pathways. Our results provide new insights into the differential roles of GBM cell subtypes in the tumor immune microenvironment that may be deployed for patient stratification and personalized treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Hipoxia/genética , Transcriptoma , Microambiente Tumoral/genética
6.
Res Sq ; 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35378748

RESUMEN

We present spatial-CITE-seq for high-plex protein and whole transcriptome co-mapping, which was firstly demonstrated for profiling 198 proteins and transcriptome in multiple mouse tissue types. It was then applied to human tissues to measure 283 proteins and transcriptome that revealed spatially distinct germinal center reaction in tonsil and early immune activation in skin at the COVID-19 mRNA vaccine injection site. Spatial-CITE-seq may find a range of applications in biomedical research.

7.
Science ; 375(6581): 681-686, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143307

RESUMEN

Spatial omics emerged as a new frontier of biological and biomedical research. Here, we present spatial-CUT&Tag for spatially resolved genome-wide profiling of histone modifications by combining in situ CUT&Tag chemistry, microfluidic deterministic barcoding, and next-generation sequencing. Spatially resolved chromatin states in mouse embryos revealed tissue-type-specific epigenetic regulations in concordance with ENCODE references and provide spatial information at tissue scale. Spatial-CUT&Tag revealed epigenetic control of the cortical layer development and spatial patterning of cell types determined by histone modification in mouse brain. Single-cell epigenomes can be derived in situ by identifying 20-micrometer pixels containing only one nucleus using immunofluorescence imaging. Spatial chromatin modification profiling in tissue may offer new opportunities to study epigenetic regulation, cell function, and fate decision in normal physiology and pathogenesis.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Código de Histonas , Histonas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Núcleo Celular/metabolismo , Epigenoma , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Microfluídica , Neuronas/citología , Análisis de la Célula Individual
8.
STAR Protoc ; 2(2): 100532, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34027489

RESUMEN

This protocol describes the use of the deterministic barcoding in tissue for spatial omics sequencing platform to construct a multi-omics atlas on fixed frozen tissue samples. This approach uses a microfluidic-based method to introduce combinatorial DNA oligo barcodes directly to the cells in a tissue section fixed on a glass slide. This technique does not directly resolve single cells but can achieve a near-single-cell resolution for spatial transcriptomics and spatial analysis of a targeted panel of proteins. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , ADN/análisis , ADN/química , ADN/genética , Código de Barras del ADN Taxonómico/métodos , Diseño de Equipo , Genómica/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Transcriptoma/genética
9.
Genomics Proteomics Bioinformatics ; 19(2): 191-207, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34000441

RESUMEN

The successes with immune checkpoint blockade (ICB) and chimeric antigen receptor (CAR)-T-cell therapy in treating multiple cancer types have established immunotherapy as a powerful curative option for patients with advanced cancers. Unfortunately, many patients do not derive benefit or long-term responses, highlighting a pressing need to perform complete investigation of the underlying mechanisms and the immunotherapy-induced tumor regression or rejection. In recent years, a large number of single-cell technologies have leveraged advances in characterizing immune system, profiling tumor microenvironment, and identifying cellular heterogeneity, which establish the foundations for lifting the veil on the comprehensive crosstalk between cancer and immune system during immunotherapies. In this review, we introduce the applications of the most widely used single-cell technologies in furthering our understanding of immunotherapies in terms of underlying mechanisms and their association with therapeutic outcomes. We also discuss how single-cell analyses help to deliver new insights into biomarker discovery to predict patient response rate, monitor acquired resistance, and support prophylactic strategy development for toxicity management. Finally, we provide an overview of applying cutting-edge single-cell spatial-omics to point out the heterogeneity of tumor-immune interactions at higher level that can ultimately guide to the rational design of next-generation immunotherapies.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Biomarcadores , Humanos , Inmunoterapia , Neoplasias/terapia , Microambiente Tumoral
10.
Cell ; 183(6): 1665-1681.e18, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33188776

RESUMEN

We present deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) for co-mapping of mRNAs and proteins in a formaldehyde-fixed tissue slide via next-generation sequencing (NGS). Parallel microfluidic channels were used to deliver DNA barcodes to the surface of a tissue slide, and crossflow of two sets of barcodes, A1-50 and B1-50, followed by ligation in situ, yielded a 2D mosaic of tissue pixels, each containing a unique full barcode AB. Application to mouse embryos revealed major tissue types in early organogenesis as well as fine features like microvasculature in a brain and pigmented epithelium in an eye field. Gene expression profiles in 10-µm pixels conformed into the clusters of single-cell transcriptomes, allowing for rapid identification of cell types and spatial distributions. DBiT-seq can be adopted by researchers with no experience in microfluidics and may find applications in a range of fields including developmental biology, cancer biology, neuroscience, and clinical pathology.


Asunto(s)
Código de Barras del ADN Taxonómico , Genómica , Especificidad de Órganos/genética , Animales , Automatización , Encéfalo/embriología , Análisis por Conglomerados , ADN Complementario/genética , Embrión de Mamíferos/metabolismo , Ojo/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos C57BL , Microfluídica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...